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Abstract

In order to establish the stability of an equilibrium solution U of an infinite-dimensional dynamical system _u ¼ X ðuÞ,
one is interested in the spectrum of the linear operator L[U] obtained by linearizing the dynamical system around U. We
use a spectrally accurate method for the computation of the spectrum of the maximal extension of the operator L[U]. The
method is particularly well-suited to the case of periodic U, although no periodic boundary conditions on the perturbations
are imposed. By incorporating the fundamentals of Floquet theory, an almost uniform approximation to the entire spec-
trum of the maximal extension is obtained, as opposed to an approximation of a few selected elements. The numerical
component of the method is limited to: (i) choosing the size of the matrices to be used; and (ii) an eigenvalue solver, such
as the QR algorithm. Compared to often-used finite-difference approaches, the method is an order of magnitude faster for
comparable accuracy. We illustrate that the method is efficiently extended to problems defined on the whole line.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Stability plays an essential role in many branches of science and engineering, including several aspects of
fluid mechanics [22], pattern formation with reaction-diffusion models [42], high-speed transmission of infor-
mation [27] and feasibility of MHD fusion devices [14]. The investigation of the stability of solutions of a given
mathematical model is an essential aspect of understanding the physical system considered. Stability analysis is
important for at least three reasons. First, if a physical phenomenon is observable and persists, then the cor-
responding solution to a valid mathematical model should be stable. Second, if instability is established, the
nature of the unstable modes might hint at what patterns may develop from the unstable solutions. Third, for
many problems of physical interest, fundamental mathematical models are well established. However, in many
cases these fundamental models are too complicated to allow for detailed analysis, thus leading to the study of
simpler approximate models using reductive perturbation methods. Consequently, the stability analysis can be
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used to validate or to suggest modifications to the mathematical models used for a given application. Taken as
a whole, stability analysis can yield significant insight into a given physical, biological, or engineering system.

2. Problem formulation

In this paper, we focus on dynamical systems, i.e., systems with a time-like variable. In the theory of
dynamical systems (see e.g. [46,18]), equilibrium solutions are singled out because of their relative simplicity
within the class of all possible solutions. Furthermore, for non-Hamiltonian systems equilibrium solutions
represent the simplest class of potential attractors for the system. Consider a dynamical system
_u ¼ X ðuÞ; ð1Þ

for a function u, which may have multiple components. Here _u denotes differentiation of u with respect to a
time-like variable t. If X(u) is an n-dimensional vector, then the system is finite dimensional, and the equilib-
rium solutions are points in Rn. This case is not considered here. Instead, we consider the case where u depends
not only on t, but on one or more different independent ‘‘spatial’’ variables, x, y, etc. For simplicity, the rest of
this section treats u as a real function of only one spatial variable, thus u = u(x, t) (the complex case is treated
by splitting it in real and imaginary parts). Then X is an operator acting on u and its spatial derivatives, and
the dynamical system is more explicitly written as
_u ¼ Nðx; u; ux; uxx; . . .Þ; ð2Þ

where lower indices denote differentiation with respect to x.

Equilibrium solutions U(x) are functions that satisfy
Nðx;U ;U x;U xx; . . .Þ ¼ 0. ð3Þ

With some conditions on N(x, U, Ux, Uxx,. . .), the above equation has solutions by the basic Cauchy–
Kovaleskaya theorem, but only those solutions that satisfy the boundary conditions imposed on (1) are of
interest. Of all such possible boundary conditions, we focus specifically on periodic boundary conditions when
the equation is defined on a finite domain, and on bounded solutions if the equation is defined on an infinite
domain.

Having obtained such a solution, we wish to know about its stability (see for instance [29,46]) what can be
said about solutions near the equilibrium solution? Will they wander away from the equilibrium solution? Will
they approach it? Or will they stay nearby without approaching it? This question can be answered at different
levels. Typically the operator N(x, u, ux, uxx, . . .) is nonlinear, and we want to know about stability of the equi-
librium solution in the sense of Lyapunov: U(x) is nonlinearly stable if for all � > 0 there is a d > 0 such that if
i u(x, t) � U(x)it = 0 < d then iu(x, t) � U(x)i < � for all t > 0, where iui denotes a suitably chosen function
norm. Usually this is asking for too much. The list of problems for which the stability has been settled this
conclusively is short, and we have to be satisfied with different concepts of stability. One often used concept
is that of spectral stability:

Definition. (Spectral stability). An equilibrium solution U(x) of a dynamical system _u ¼ X ðuÞ is spectrally
stable if the spectrum of the linear operator obtained by linearizing X(u) around U(x) has no strictly positive
real part.

Linearizing the dynamical system (1) or (2) with u(x, t) = U(x) + �v(x, t) gives (assuming analyticity of N at
u(x, t) = U(x))
_v ¼L½UðxÞ�vþ Oð�Þ; with L½UðxÞ� ¼ oN
oU
þ oN

oU x
ox þ

oN
oUxx

o2
x þ � � � . ð4Þ
Here expressions like oN/oUx are shorthand for oN/ouxju = U. Since the right-hand side of this equation is
independent of t, separation of variables (ignoring the Oð�Þ term)
vðx; tÞ ¼ wðxÞekt ð5Þ

results in
L½UðxÞ�wðxÞ ¼ kwðxÞ; ð6Þ
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justifying the definition of spectral stability. This is the concept of stability we use in this paper. It is different
from linear stability (for every � > 0 there is a d > 0 such that if i v(x, t)it = 0 < d, then iv(x,t)i < � for all t)
which results from spectral stability if the eigenfunctions of L½UðxÞ� are complete, or if all purely imaginary
eigenvalues have multiplicity one. Amusingly, spectral stability is a necessary condition for nonlinear stability,
whereas linear stability is not [29]. Clearly neither one of these is sufficient to give nonlinear stability.

The method presented in this paper is applicable to the more general problem of computing the spectrum of
a locally-acting (no integration operators) linear operator with periodic coefficients
L ¼
XM

k¼0

fkðxÞok
x; fkðxþ LÞ ¼ fkðxÞ; ð7Þ
which does not necessarily originate from a stability problem. If the functions fk(x), k = 1, . . .,M are scalar
valued, the operator L is a scalar linear operator, otherwise it is a vector operator. The spectrum rðLÞ is
defined by
rðLÞ ¼ fk 2 C :¼ kwk <1g; ð8Þ
where w satisfies Lw ¼ kw, and is defined in a function space determined by which norm is used.
Eq. (6) is the focal point of this paper. Ideally, one is able to determine the spectrum analytically. This is

only possible in some cases, and typically one has to resort to numerical methods. Depending on the system
under consideration, some basic properties and bounds on the spectrum may be known [17,36,37]. This is the
case for self-adjoint systems (the spectrum is confined to the real line), Hamiltonian systems (eigenvalues occur
in quadruplets), etc.

Remark (Applications to the inverse scattering method). In addition to investigating the spectral stability of
solutions of nonlinear partial differential equations, there are many more applications where the spectrum of a
given linear operator is needed. As an example, consider the inverse scattering method for integrable
differential equations [3,2]. Associated with every such integrable equation is a Lax pair, which consists of two
linear operators. The first step of the inverse scattering program is to solve the forward scattering problem:
given initial conditions for the integrable system, one calculates the spectral information associated with the
first (usually spatial) element of the Lax pair. The method discussed in this paper may be used to solve this
problem numerically. Some examples are given in Section 4.

Below, in Section 3, we present a method which recasts the spectral problem in an equivalent setting, using
Fourier modes. Different aspects of this approach have already been used by different authors, see for instance
[8,23,26,43]. Those authors were focused on solving specific problems, rather than considering the numerical
method in its own right. Numerous classical examples are discussed in Section 4. Those examples were all
selected because they give rise to spectra that are well understood, enabling us to separate the use of the
method from the problems posed by specific applications.
3. Outline of the Floquet–Fourier–Hill method

In this section, we present a Floquet–Fourier-analysis based method. This method was first used with minor
variations by Hill in 1886 [28] to determine the spectrum of the equation that now bears his name. Because of
this we refer to the method as the Fourier–Floquet–Hill method (FFHM), or sometimes Hill’s method, in
short. The method allows for the computation of the spectra of linear operators and has numerous advantages
over finite difference methods. Below we show that:

1. The periodicity of the coefficients of the linear operator is used explicitly by using Fourier series.
2. The FFHM is spectrally accurate in the sense that the approximations of the spectral elements it computes

are spectrally accurate, as a result of the use of these Fourier series approximations.
3. These spectral elements are obtained as eigenvalues of a truncated difference equation. This difference equa-

tion is equivalent to the original problem (6). Thus the lattice used for the computation of the spectral ele-
ments is inherent in the original Eq. (6) considered: it is the lattice conjugate to the period lattice of Eq. (6).
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4. If we settle on the QR algorithm for the computation of the eigenvalues of the matrix obtained from this
truncated difference equation, then the only fundamental numerical decision to be made is that of how to
truncate the domain of the difference equation. The algorithm in its most general form allows for some
additional choices, but these are not essential.

5. The incorporation of Floquet theory into the FFHM allows for an almost uniform approximation of those
components of the spectrum that are being approximated, as opposed to isolated elements of it.

For convenience, we assume that all coefficients of the operator L in (7) are analytic, so that integrals,
derivatives and sums, finite or infinite, proper or improper, may be interchanged when so desired. For the sake
of explicitness, we also assume below n = 1, i.e., the operator L is scalar. A vector example is considered in
Section 4.4.

Since the coefficients of L are periodic with period L, they may be represented by a Fourier series:
fkðxÞ ¼
X1

j¼�1
f̂ k;je

i2pjx=L; k ¼ 0; . . . ;M ð9Þ
with
f̂ k;j ¼
1

L

Z L=2

�L=2

fkðxÞe�i2pjx=L dx; k ¼ 0; . . . ;M ; j 2 Z; ð10Þ
where i denotes the imaginary unit. Additional relationships exist between some of these coefficients if fk(x) is
real-valued, but no such constraint needs to be imposed now.

We start by recalling Floquet’s theorem, as found for instance in [4,15,24]. As is usual, the theorem is for-
mulated for first-order systems.

Theorem (Floquet). Consider the linear homogeneous differential equation
y0 ¼ AðxÞy; ð11Þ

for some square matrix A(x) of complex continuous functions such that A(x + L) = A(x). Then any funda-
mental matrix U(x) of this system may be decomposed as
UðxÞ ¼ ÛðxÞeRx; ð12Þ

where Ûðxþ LÞ ¼ ÛðxÞ; ÛðxÞ is nonsingular and R is a constant matrix.

If we are only interested in solutions that are bounded for all x 2 R, Floquet’s theorem allows us to greatly
reduce the functional form of any such solutions. The behavior as x! ±1 is governed by the exponential
factor, since the first factor is periodic. Further, we may use a similarity transformation to reduce R to its
Jordan form. Indeed, the differential equation under consideration is linear, and so only a set of fundamental
solutions is of interest. We refer to the eigenvalues of R as Floquet exponents. There are three cases:

1. Suppose there exist Floquet exponents r giving rise to non-diagonal blocks in the Jordan form of R. Then
the corresponding solutions of the differential equation are algebraically growing. Such Floquet exponents
may be ignored since we are only interested in solutions of the differential equations that are bounded for all
x, by the definition of the spectrum of the differential operator.

2. Similarly, if there are Floquet exponents with nonzero real part, then these give rise to exponentially grow-
ing solutions as x!1 ðRr > 0Þ or x!�1 ðRr < 0Þ.

3. It follows that the only solutions of linear homogeneous differential equations with periodic coefficients that
are bounded for all x 2 R correspond to purely imaginary Floquet exponents.

Thus, every bounded solution of our fundamental equation (6) is of the form
wðxÞ ¼ eilx/ðxÞ; ð13Þ

with /(x + L) = /(x) for any fixed k, and l 2 [0,2p/L). The factor eilx is referred to as a Floquet multiplier
and il is the Floquet exponent mentioned above. In what follows, we loosely refer to l as the Floquet
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exponent. Note that in different areas of science, Floquet theory may be known as monodromy theory (Ham-
iltonian systems, etc.) or Bloch theory (solid state theory, etc). In the context of Bloch theory the Floquet
exponent is often referred to as the quasi-momentum.

Like the coefficient functions, the function /(x) may be expanded as a Fourier series with period L as well.
For future use, we expand /(x) as a Fourier series in x of period PL, with P 2 N. This effectively limits the
possible values of the Floquet exponent l: if P = 1, at most l 2 [0, 2p/L); if P = 2, at most l 2 [0,p/L) is
needed, etc. Thus
wðxÞ ¼ eilx
X1

j¼�1
/̂je

i2pjx=PL ¼
X1

j¼�1
/̂je

ixðlþ2pj=PLÞ; ð14Þ
and
/̂j ¼
1

PL

Z PL=2

�PL=2

/ðxÞe�i2pjx=PL dx; j 2 Z ð15Þ
is the jth Fourier coefficient of /(x). After we multiply (6) (using (7)) by e�ilx, any term of the resulting equa-
tion is periodic. Taking the nth Fourier coefficient of this equation, we obtain
k/̂n ¼
1

PL

Z PL=2

�PL=2

e�i2pnx=PL e�ilx
XM

k¼0

fkðxÞok
xwðxÞ

 !
dx

¼
XM

k¼0

X1
j¼�1

X1
m¼�1

f̂ k;j/̂m
1

PL

Z PL=2

�PL=2

e�i2pnx=PL�ilxþi2pjx=L ok
xeilxþi2pmx=PL

� �
dx

¼
XM

k¼0

X1
j¼�1

X1
m¼�1

f̂ k;j/̂m i lþ 2pm
PL

� �� �k
1

PL

Z PL=2

�PL=2

ei2pxð�nþjPþmÞ=PL dx

¼
XM

k¼0

X1
j¼�1

X1
m¼�1

f̂ k;j/̂m i lþ 2pm
PL

� �� �k

d0;jP�nþm; ð16Þ
where dj,k is the Kronecker delta. Thus, if n � m is divisible by P (i.e., Pjn � m),
X1
m¼�1

XM

k¼0

f̂ k;n�m
P

i lþ 2pm
PL

� �� �k
 !

/̂m ¼ k/̂n; n 2 Z. ð17Þ
This equation can be rewritten as a bi-infinite matrix equation:
L̂ðlÞ/̂ ¼ k/̂; ð18Þ

with /̂ ¼ ð. . . ; /̂�2; /̂�1; /̂0; /̂1; /̂2 . . . ÞT and where the l-dependence of L̂ is explicitly indicated. This
bi-infinite matrix L̂ðlÞ is defined by
L̂ðlÞnm ¼
0 if P -n� m;PM
k¼0

f̂ k;n�m
P

i lþ 2pm
PL

� �� 	k
if P jn� m;

8<
: ð19Þ
The difference Eq. (17) or the matrix equation (18) are equivalent to the original problem (6). No approxima-

tions were introduced to obtain either (17) or (18). The linear problem (6) has associated with it its period
lattice K ¼ fnL : n 2 Zg. As a consequence, the equivalent problem in terms of Fourier series (17) or (18)
has associated with it the conjugate lattice K̂ ¼ fn2p=L : n 2 Zg (remember that the integer parameter P

was artificially introduced and is not essential to the problem), which determines the set of possible l values:
l 2 [0, 2p/PL) (incorporating P again).

It is conceivable that problems exist where the difference Eq. (17) is more convenient to analyze than (6),
but in this paper it is regarded as a tool to obtain numerical approximations to rðLÞ, the spectrum of (6). To
this end, we choose a cutoff N on the number of Fourier modes of the eigenfunctions /(x), resulting in a
matrix system of dimension 2N + 1:
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L̂N ðlÞ/̂N ¼ kN /̂N ; ð20Þ

where the eigenvalues kN are approximations, in the sense that all kN 2 rðL̂N ðlÞÞ ! k 2 rðLÞ as N!1.
Similarly, for any fixed l, the knowledge of the eigenvectors /̂N allows for the reconstruction of the eigenfunc-
tion w(x), using (14). Thus, the definition of convergence used here is the following:

Definition (Convergence of the spectral approximation). Any eigenvalue kN of L̂N ðlÞ converges to an element
of rðLÞ:
lim
N!1

dðkN ; rðLÞÞ ¼ 0; ð21Þ
where dðkN ; rðLÞÞ denotes the distance of kN to the set rðLÞ [35]. Further, the incorporation of the entire
interval of Floquet exponents l 2 [0,2p/PL) gives rise to the entire spectrum:
lim
N!1

[
l2½0;2p=PLÞ

rðL̂N ðlÞÞ ¼ rðLÞ. ð22Þ
It is not proven here that this definition of convergence holds for the numerical method presented. However, it
is clear from Example 2 (see below) that this concept of convergence holds for the case of operators with con-
stant coefficients. Further, our numerical examples of Section 4 point to the same conclusion.

At this point we have all the ingredients for a numerical scheme for computing an approximation of rðLÞ.
The steps of the FFHM are:

1. Fix P, so that /(x) may be expanded in a Fourier series of period PL.
2. Fix the number of Fourier modes N to be used for the approximation of /(x).
3. Fix a sequence of l-values {l1, . . .,lD}, lk 2 [0, 2p/PL), k = 1, . . .,D.
4. For each k 2 {1, . . .,D} compute the eigenvalues (and if so desired, the eigenvectors) of the (2N + 1)-dimen-

sional matrix equation L̂N ðlkÞ/̂N ¼ kN /̂N .
5. The collection of all of these eigenvalues gives an approximation to rðLÞ. A more accurate approximation

may be obtained by increasing N. An approximation of the same accuracy but with more spectral elements
may be obtained by increasing D while keeping N constant.

The black-box nature of this algorithm is the reason that the FFHM is straightforward to use as the com-
putational engine of SpectrUW [19,20].

It may be appropriate to comment on (19). This formula is meant to illustrate the above-mentioned black-
box nature of the FFHM: it provides a prescription by which to fill the matrix L̂NðlÞ for any scalar finite-
order linear differential operator. However, the formula may not appear as transparent as it should. To clarify
its use, we elaborate on it from a different point of view. First, it is clear that every term of (7) corresponds to a
term in the summation in (19):
fkðxÞok
x $ L̂ðkÞðlÞ; ð23Þ
such that
L̂ðlÞ ¼
XM

k¼1

L̂ðkÞðlÞ. ð24Þ
As above, the entries L̂ðkÞðlÞnm of L̂ðkÞðlÞ are given by
L̂ðkÞðlÞnm ¼
0 if P -n� m;

f̂ k;n�m
P

i lþ 2pm
PL

� �� 	k
if P jn� m:

(
ð25Þ
Thus, when setting up the FFHM matrix L̂N ðlÞ for a given linear operator, one proceeds term-by-term. For
every term, the following steps are executed:

1. Construct the bi-infinite list of Fourier coefficients of fk(x): ð. . . ; f̂ k;�2; f̂ k;�1; f̂ k;0; f̂ k;1; f̂ k;2; . . .Þ.
2. A matrix of dimension (2N + 1) · (2N + 1) is filled in, with the following structure:
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� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

; ð26Þ
where * denotes a non-zero entry. Thus, the non-zero matrix entries fill the main diagonal and certain sub-
and superdiagonals. Between any two filled diagonals, there are exactly P � 1 zero diagonals.

3. Every non-zero diagonal is multiplied by one of the Fourier coefficients of fk(x): the main diagonal by f̂ k;0 ,
the first non-zero superdiagonal by f̂ k;�1, the first non-zero subdiagonal by f̂ k;1, the second non-zero super-
diagonal by f̂ k;�2, and so on. Thus generically L̂NðlÞ is a full matrix. In the special case where all the coef-
ficients fk(x), k 2 {0,. . .,M} are trigonometric polynomials, the bi-infinite matrix L̂ðlÞ has a finite number
of nonzero super and subdiagonals, thus it is a banded matrix.

4. On these non-zero diagonals, every Fourier coefficient entry is multiplied by i lþ 2pm
PL

� �� 	k
, where m is the

column in which the entry goes. Note that rows and columns are numbered from �N to N. Thus, the zeroth
(middle) column is multiplied by (il)k. The first column (i.e., the column to the right of the central column)
is multiplied by (il + i2p/PL)k, the minus first column (i.e., the column to the left of the central column) is
multiplied by (il � i2p/PL)k. The second column is multiplied by (il + i4p/PL)k, and so on.

This way, every single one of the matrices L̂ðkÞðlÞN is easily constructed, using a diagonal-by-diagonal con-
struction, followed by multiplying columns by the appropriate Floquet factor. We illustrate this using an
example:

Example 1. Consider the term f ðxÞo7
x , where f ðxÞ ¼

P1
n¼�1einx=2n2

. Thus we have L = 2p, and the list of

Fourier coefficients of f(x) is given by ð. . . ; f̂ k;�2; f̂ k;�1; f̂ k;0; f̂ k;1; f̂ k;2; . . .Þ ¼ ð. . . ; 1=24; 1=22; 1; 1=22;

1=24; . . .Þ. Let us choose P = 3, so that all filled diagonals of the FFHM matrix corresponding to
f ðxÞo7

x are separated by P�1 = 2 zero diagonals. For simplicity, let N = 4, so that a 9 · 9 matrix is
constructed, as shown below.
This example demonstrates how the FFHM matrices are built up, with Fourier coefficients filling in along
(sub, super) diagonals, separated by P � 1 zero diagonals. The Floquet factors (il + 2pm/PL) fill in along
columns, as demonstrated above. For clarity, rows and columns have been labeled as they should, from �N to
N, resulting in the FFHM matrix in the box.
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The following example illustrates that the FFHM is exact on the class of linear operators with constant
coefficients. Further, it shows that the spectrum obtained does not consist of a discrete set of points (as would
be the case when using periodic eigenfunctions), but rather of a set with continuous components in the
complex plane.

Example 2. Consider the important special case of the operator L having constant coefficients:
L ¼
XM

k¼0

ako
k
x; ak 2 C; k ¼ 0; 1; . . . ;M . ð27Þ
In this case L = 0 and it suffices to choose N = 0, so that
wðxÞ ¼ eilx/̂0; l 2 R. ð28Þ

we obtain (using a 1 · 1 matrix eigenvalue equation)
k ¼
XM

k¼0

akðilÞk; l 2 R; ð29Þ
which is the correct analytical expression for the locus of rðLÞ. Note that (29) is the dispersion relationship
for the linear partial differential equation ut ¼Lu (see Appendix of [3], for instance).

Remarks

� Historical context. Hill [28] used virtually the same method to examine the spectrum of what is now known as
Hill’s equation, seven years before the publication of Floquet’s theorem [24] (published at his own expense in
1877, and reprinted in [28] nine years later). For computing purposes Hill used N = 1, resulting in a 3 · 3
matrix, P = 1, with l = 0 and l = 1, corresponding to the edges of the spectrum. Given how crude Hill’s
approximation was, the results obtained were remarkably accurate. Hill did consider the infinite-dimen-
sional difference system as well, leading to ‘‘Hill’s infinite determinant’’, obtaining some theoretical results
from it. Since then Hill’s method has been used sporadically. Analysts were at odds with the convergence
issues of the infinite-dimensional determinant approach, and the generality of Hill’s approach for numerical
purposes went unrecognized. A good overview of Hill’s work may be found in Whittaker and Watson’s clas-
sic text [50]. There are many instances where Hill’s approach was used to numerically approximate the spec-
trum of a linear problem. The method is somewhat popular in the area of fluid stability, e.g. [8,26,40,16], but
its connection to Hill’s work and its generality are unacknowledged. The FFHM was rediscovered in the
Russian literature by Pavlenko and Petviashvili [43], and successively used by others [23]. These authors
appear unaware of Hill’s work, but Pavlenko and Petviashvili hint at the generality of the method.
� Function space and boundary conditions. Typical eigenfunctions of the form (14) are quasi-periodic due to

the presence of two typically non-commensurate periods PL and 2p/l. Nevertheless, the eigenfunctions are
square-integrable on [�PL/2,PL/2], since the 2p/l-periodicity disappears from the integration:
1

PL

Z PL=2

�PL=2

jwj2 dx ¼
X1

j¼�1
jŵjj2 <1. ð30Þ
In addition, all these eigenfunctions are bounded on the real line, by construction.The boundary conditions
can be made more explicit at this point. The eigenfunctions satisfy
wðxþ PLÞ ¼ eilPLwðxÞ; ð31Þ

which follows from (14) immediately. Such boundary conditions are known as Bloch boundary conditions
[5]. Due to the attention devoted to second-order self-adjoint problems, it has been customary to focus
especially on periodic (with period L) and anti-periodic (with period 2L) eigenfunctions, which correspond
to l = 0 with P = 2. This results in an infinite, but discrete set, which is a subset of the spectrum we wish to
capture. By considering eigenfunctions of larger periods (for instance by choosing P > 2), a larger discrete
subset is found. This subset provides a point covering of higher density of the spectrum we wish to obtain
than the first subset. As the period of the eigenfunctions approaches infinity, an increasingly larger discrete
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subset of the spectrum we consider is found. That spectrum may be obtained as the limit spectrum of these
discrete spectra, for sequences of eigenfunctions with increasing periods. The linear operator L with these
boundary conditions is referred to as the maximal extension of L [33].
� Eigenfunctions with larger periods. The integer parameter P was introduced artifically. Often it is chosen to

be 2, so that the functions /(x) are periodic with period 2L, i.e., /(x) is periodic or antiperiodic with the
same period as the coefficients fk(x), k = 1, . . .,M. Thus, even when choosing D = 1 all periodic or anti-
periodic eigenfunctions of (6) are obtained. This allows for a more direct comparison with classical
monodromy methods, such as those used for instance in [13]. Moreover, often the elements of the spectrum
corresponding to periodic and anti-periodic eigenfunctions are good approximations to the extremal parts
of the spectrum, e.g., the elements with largest or smallest real parts, etc. For second-order self-adjoint
problems, it is known that these spectral elements give the edge elements of the spectrum exactly [38].
Further, for a (2N + 1) · (2N + 1) FFHM matrix, used to determine the first 2N + 1 Fourier coefficients
of the eigenfunctions, choosing P = 2 results in the same number of Fourier coefficients being required
of the input functions fN(x), . . ., f0(x). In other words, the same amount of information is used as input
for the problem as we are aiming to find as output. As the first example above illustrates, choosing
P > 2, we are trying to recover more information about the eigenfunctions than is used as input for the
coefficient functions. In Example 1, the eigenvectors are 9 dimensional, resulting in 9 Fourier coefficients
of the eigenfunctions. On the other other hand, only 5 Fourier coefficients of f(x) are used to construct
the FFHM matrix. Conversely, with P = 1, 4N + 1 Fourier modes of the coefficient functions are used
to compute only 2N + 1 Fourier coefficients of the eigenfunctions. Lastly, as the examples below illustrate,
different choices of P may lead to faster computations.
� Choosing Floquet exponents. For convenience, the sequence {l1, . . .,lD}, lk 2 [0,2p/PL), k = 1, . . .,D is usu-

ally chosen equally spaced, so that lk = 2p(k � 1)/PLD, k = 1, . . .,D. If so chosen, the functions
wkðxÞ ¼ eilkx/ðxÞ are periodic with period PLD. Truly quasi-periodic functions w(x) may be obtained by
including l-values that are not rationally related to 2p/L. It should be remarked that in applications it
is often beneficial to choose l 2 [�p/PL,p/PL), for symmetry reasons. This is especially important for com-
putations where N is small (say N � 10 or less). In those cases, the asymmetric truncation of the bi-infinite
difference equation may result in errors which are avoided by performing this asymmetric truncation over a
symmetric range of l-values. If values of l are chosen outside of the basis cell of the conjugate lattice, i.e.,
l 62 [0, 2p/PL), then an equivalent difference Eq. (17) is obtained, but for a shifted bi-infinite eigenvector /̂.
Since n runs over all integers, this results in the same eigenvalues, but with shifted eigenvectors. Thus no
new elements of the spectrum are obtained this way, and l may be restricted to the basis cell of the con-
jugate lattice, as stated.
� Heisenberg’s matrix formulation of non-relativistic quantum mechanics [39] is obtained by reformulating

the Schrödinger equation in its so-called momentum representation. This is nothing but a transformation
to Fourier variables. When operating on the whole real line, it is clear that applying Hill’s method is just
this transformation from the Schrödinger operator formulation to the Heisenberg matrix formulation. For
problems with periodic coefficients, Floquet or Bloch theory has to be taken into account in order to have
the Heisenberg and Schrödinger representations be fully equivalent.
� The effect of truncating the Fourier series to include a finite number of modes is to not approximate spectral

elements in parts of the spectrum that are far removed from the origin of the spectral plane.

3.1. Fourier transforms vs. Fourier series

Taking a Fourier transform of (6) results in the difference equation
kŵðjÞ ¼
XM

k¼0

X1
j¼�1

f̂ k;j i j� 2pj
L

� �� �k

ŵðj� 2pj=LÞ; ð32Þ
where ŵ ¼
R1
�1 e�ijxwðxÞdx. This difference equation is clearly defined on the conjugate lattice K̂ ¼

fn2p=L : n 2 Zg. Further, in the setting of Fourier transforms, j is not restricted to integer values, and may thus
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assume all values in [0, 2p/L), resulting in a one-parameter family of grids, all shifted versions of the elementary
grid ð2p=LÞZ by shifting by l = k mod 2p/L. Then l plays the role of a Floquet exponent. This approach may be

considered a direct proof of that part of the classical Floquet theorem that deals with bounded solutions. As before,
a numerical method for the approximation of rðLÞmay be obtained from the difference Eq. (32) by truncating
the size of the bi-infinite eigenvectors. This scheme has the same features advertised at the beginning of this
section. Although appearing similar, it is not immediately evident that the difference equations (17) and (32)
are equivalent. To establish this, we return to the form of the eigenfunction given by the Floquet theorem:
w(x) = eilx/(x). Equivalently, substituting the Fourier series of /(x) results in (14). This shows that the Fourier
transform of w(x) resides on a shifted delta-function measure. Explicitly, we obtain
Table
Compa

FFHM
FFHM
FFHM

FDM2
FDM4

All CP
‘‘not a
ŵðjÞ ¼ 2p
X1

j¼�1
ŵjdðl� jþ 2pj=PLÞ. ð33Þ
Substituting this result in (32) results in (17), establishing the equivalence of the two approaches. There are set-
tings where the use of Fourier transforms is advantageous over that of Fourier series. In (7), we restricted our-
selves to differential operators. When using the Fourier transform approach, it is possible in some cases to
incorporate integration operators (not always, as this leads to division by the Fourier variable), and in all cases
to incorporate convolution operators. Either one leads to significant complications of finite difference methods.
The FFHM also runs into problems, and we can no longer fall back on the Floquet theorem to justify its use.

3.2. Computational cost

One of the main features of these FFHMs is the possibility to obtain a better, more uniform approximation
of rðLÞ by increasing D. Thus instead of computing eigenvalues and eigenvectors of a larger matrix, we com-
pute eigenvalues and eigenvectors of matrices of the same size, but of more of them. This results in a signif-
icant reduction of computation time required for the approximation of rðLÞ: The cost for the computation of
D(2N + 1) eigenvalues and eigenvectors (accuracy determined by N), using the QR algorithm, is proportional
to D(2N + 1)3. Using a standard finite difference method, this cost would be proportional to D3(2N + 1)3, thus
finite difference methods are a factor D2 more expensive. This quick comparison does not take into account the
actual location of the eigenvalues computed, which is more uniform for the FFHMs than for the finite differ-
ence methods. Furthermore, in order to obtain the same accuracy as the FFHMs, finite difference methods
usually require a higher value of N, as can be seen from Table 1.

3.3. Incorporating Floquet theory in finite difference methods (FDMs)

The method of finite differences is the most commonly used technique for computing an approximation to
the spectrum of a given linear operator. FDMs [6] are black-box methods in that they use little of the specifics
of the problem at hand. It is possible and even likely that for any given problem a more tailored approach will
result in a ‘‘better’’ (faster, more accurate, etc.) answer. The main advantage of FDMs is their applicability to
a large class of problems, without their having to involve the mathematical details of the specific problem.
1
ring the FDM (2nd and 4th order) and FFHM for computing the lowest eigenvalue ~a � �1:513956885056448 of (35) with q = 2

Accuracy: 10�3 Accuracy: 10�6 Accuracy: 10�9

Matrix size CPU time Matrix size CPU time Matrix size CPU time

(P = 1) 5 0.5 7 0.6 9 0.5
(P = 2) 7 1 13 1 17 1
(P = 4) 9 1.5 25 2.6 33 3.3

239 1075 8000 5.5E6 N/A N/A
52 25 293 1100 1630 1.5E5

U times are given relative to those of the FFHM with P = 2, which are 0.0004, 0.0007 and 0.0010 s, respectively. Here N/A means
pplicable’’ and denotes a numerical run requiring a matrix size beyond Matlab7s capabilities.
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In addition, finite-difference methods are relatively straightforward to implement. Further, the local nature of
FDMs leads to banded matrices, with a few additional corner elements, due to the boundary conditions. Thus
the matrices obtained from the FDM are often sparse, which does offer some advantages for the computation
of the eigenvalues [47].

FDMs are based on Taylor series expansions, and as such allow for explicit estimates of the computational
error. For a given h = Dx = L/N (stepsize), N eigenvalues and eigenvectors are computed. In order to approx-
imate more elements of rðLÞ, one increases N, which at once results in more accurate approximate spectral
elements, and more of them. These are obtained at the cost of increased computational time, proportional to
(nN)3, if the QR algorithm is used for the eigenvalue/eigenvector solver [47].

It is possible to augment FDMs by taking Floquet theory into account. Using FDMS with periodic bound-
ary conditions as a starting point, we illustrate below how FDMs may be modified rather trivially to obtain
more uniform approximations of rðLÞ, at a low implementation cost and a computational increase linear in
the number of Floquet shifts D. At that point, the most important remaining difference between FDMs and
FFHMs is the higher (spectral) accuracy of the latter.

We show this using the FDM approximation of fourth order to the second-derivative operator. Instead of
the more standard periodic boundary conditions yN+k = yk with k = �2,�1,0,1,2, we may use Floquet or
Bloch boundary conditions: from y(x) = eilx/(x), we obtain y(x + L) = eilLy(x). Thus, we may impose
yN+k = eihyk for k = �2,�1,0,1,2, for h 2 [0,2p) which corresponds to l 2 [0, 2p/L). Then the FDM to
approximate o2 is
Dð4;hÞ2 ¼ 1

12h2

�30 16 �1 0 � � � � � � 0 �e�ih 16e�ih

16 �30 16 �1 0 � � � � � � 0 �e�ih

�1 16 �30 16 �1 0 � � � � � � 0

0 �1 16 �30 16 �1 0 � � � � � �
. .

. . .
. . .

.

� � � � � � 0 �1 16 �30 16 �1 0

0 � � � � � � 0 �1 16 �30 16 �1

�eih 0 � � � � � � 0 �1 16 �30 16

16eih �eih 0 � � � � � � 0 �1 16 30

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

; ð34Þ
which should be contrasted with the same matrix obtained using periodic boundary conditions, corresponding
to h ” 0. As a general rule, every non-zero element in the upper right corner is multiplied by e�ih and the cor-
responding elements in the lower left corner are multiplied by eih. If the matrix Dð4;hÞ2 with h ” 0 is self-adjoint, so
is the one above. This way, using all h 2 [0,2p), an approximation to the entire spectrum rðLÞmay be obtained.
Then more equally accurate elements of this spectrum are obtained by varying h, without decreasing h. Thus, as
in the FFHM, more elements of the spectrum are obtained at the cost of computing eigenvalues of matrices of
the same size. For instance, to approximate spectral elements corresponding to both periodic and antiperiodic
eigenfunctions, the above matrix is used twice: once with h = 0 (periodic) and once with h = p (antiperiodic).

4. Examples

In this section we consider several examples. These examples were chosen because their spectra are well-
understood. Thus we can demonstrate the virtues and pitfalls of each method without getting tangled up in
the intricacies of the specific problem we are attempting to solve. All numerical runs were done in Matlab,
on a Mac G4 single processor (1G Hz) laptop with 1GB memory.

4.1. Mathieu equation

The Mathieu functions [1] are the bounded solutions of the Mathieu equation
y 00 þ ða� 2q cosð2xÞÞy ¼ 0() � y 00 þ 2q cosð2xÞy ¼ ay; ð35Þ
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one of the classical linear differential equations defining a class of special functions. The equation originates
from the Helmholtz equation through the use of separation of variables. Here we are interested in determining
all a values for which bounded solutions to (35) exist. Many texts on perturbation methods (e.g. [7,34]) use this
equation as one of their prototypical examples. One of their goals is to determine the edges of the spectrum for
varying q. The operator �o2

x þ 2q cosð2xÞ is self-adjoint, thus the spectrum is confined to the real line. Also,
since the operator �o2

x is positive and 2qcos(2x) is a bounded operator (for fixed q), the spectrum of (35) is
bounded from below, and extends to infinity. Thus, as announced, the spectrum of this problem is well-under-
stood. We illustrate here how an accurate approximation to the spectrum may be obtained using either the
FDM or the FFHM. Both methods are compared using different sets of criteria.

Using (14) with L = p and equating the coefficients of different harmonics results in the difference equation
q/̂n�P þ lþ 2n
P

� �2

/̂n þ q/̂nþP ¼ a/̂n; n 2 Z; ð36Þ
with l 2 [0,2/P). Because of the symmetry of the coefficient function of (35), it is possible to reduce the list of
possible l values further. Since we wish to emphasize the black-box qualities of the FFHM this is not pursued
here.

Restricting the above equation to n = �N, . . .,N results in a class of matrix equation (20), one for each
choice of P. Here L̂N is of size (2N + 1) · (2N + 1). Its diagonal is ((l � N/P)2, . . ., (l � 2/P)2, l2, (l + 2/
P)2, . . ., (l + N/P)2). Its Pth sub- and super diagonals consist of qs. All other elements are zero. This matrix
is self-adjoint for any choice of l 2 [0,2/P), and any choice of q 2 R, reflecting the self-adjointness of the ori-
ginal problem.

Consider the truncated matrix equation with D equispaced l-values: lk = 2(k � 1)/P, k = 1, . . .,D. Let
(a1,a2, . . .,aD(2N + 1)) be the ordered list of eigenvalues of the D linear problems associated with L̂N for these
different l values. Then ak+1 P ak, for k = 1, . . .,D(2N + 1) � 1.

First, we compute approximations to the lowest eigenvalue ~a of (35). We choose q = 2, then ~a �
�1:513956885056448. The results are displayed in Table 1. For all runs, D = 1 and l = 0, thus we are com-
puting eigenvalues corresponding to eigenfunctions with period pP. It is known [38] that for (35) the endpoints
of the spectral bands correspond to periodic or anti-periodic (periodic with twice the period) eigenfunctions.
Thus the FFHM and its Fourier transform analogue are ideally suited to the task of computing ~a with high
accuracy. Moreover, as observed from Table 1, a linear increase in the number of Fourier modes results in an
exponential improvement in the accuracy of ~a, as is expected of a spectral method. A comparable accuracy
improvement using the FDM requires an exponential size increase of the FDM matrix. It is important to
notice the dependence on P of the computational time of the Fourier methods.

A second comparison focuses on entire components of the spectrum, as opposed to a single element of it.
Define the numerical spectral deficit of a spectral band rB to be
dB ¼
max

ak ;akþ12rB

ðakþ1 � akÞ

jrBj
. ð37Þ
In other words, dB is the fraction of the maximal distance between any two successive approximations to
spectral elements in rB to the length of the spectral band rB. Thus as dB! 0, a uniformly better approxima-
tion to rB is obtained. It follows from Floquet theory applied to the Matthieu equation [38] that dB! 0 simul-
taneously across all spectral bands where approximations to spectral elements are computed. Thus, dB has a
constant value across all spectral bands that are approximated, and is zero for all others. As N is increased, the
number of bands that are approximated by the FFHM increases. In Table 2, a comparison is shown for the
FFHM and the FDM (using the second band). For all FFHM runs, the N value from Table 1 is used for
which ~a is approximated with an accuracy of 10�3. Then D is increased to obtain more spectral element
approximations. This was also done for the FDM (4th order), as explained at the end of the last section.
All these results are contrasted with the 4th order FDM without using Floquet theory. One should notice that
the CPU time is inversely proportional to the required dB. This is a vast improvement over regular FDMs
without Floquet theory. Except for the largest allowed spectral deficit, these methods require matrixes of a
size larger than what Matlab7 can handle (about 8192 · 8192). For the most efficient FFHM with P = 2,



Table 2
Comparing the FDM (4th order) and FFHM for computing a uniform approximation to the second spectral band of (35) with q = 2

d2 = 0.25 d2 = 0.025 d2 = 0.0025

D CPU time D CPU time D CPU time

FFHM (P = 1) 12 0.4 124 1 1190 1.3
FFHM (P = 2) 6 1 62 1 590 1
FFHM (P = 4) 3 2 31 1.3 295 1.3
FDM4 matrix size=1172 1 5.4E5 N/A N/A N/A N/A
FDM4, D > 1 4 8100 32 2100 310 1700

All CPU times are given relative to those of the FFHM with P = 2, which are 0.001, 0.03 and 0.35 s, respectively. Here N/A means ‘‘not
applicable’’ and denotes a numerical run that was not done due to lack of memory on our platform.
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the matrix size is 7, which is a tiny matrix for Matlab computations. Smaller dB does not increase this matrix
size (until jrBjdB becomes comparable to the allowed error on ~a), but rather requires the consideration of more
matrices of this same size.

Fig. 1 illustrates the effect of increased d (theoretically independent of which band is being considered), to
obtain approximations to entire parts of the spectrum, as opposed to isolated points of it. Lastly, we regen-
erate the famous picture of the spectrum of the Mathieu equation (35) for varying q, see [7,1]. This picture
displays a vs. q, for 0 6 q 6 15, using 300 different equally spaced q values. The same matrix size (25 · 25)
was used for all q values, so as to automate the numerics more easily. Similarly, D = 62 for all q values.
Fig. 2 was generated in 25.5 s, using the FFHM with P = 2. Any point in Fig. 2 has an absolute error of
at most 10�3.

4.2. Hill’s equation with a finite number of gaps

4.2.1. The periodic case

As our next example, we consider two Hill equations with a finite number of gaps:
Fig. 1.
dB = 0
with P

D = 1
L�ðkÞu ¼ �u00 þ ð2k2sn2ðx; kÞ � k2Þu ¼ ku; ð38aÞ
LþðkÞv ¼ �v00 þ ð6k2sn2ðx; kÞ � 4� k2Þv ¼ kv. ð38bÞ
Here sn(x,k) denotes the Jacobi sine function, limiting to sin(x) as the elliptic modulus approaches 0, and lim-
iting to tanh(x) as the elliptic modulus approaches 1. Further, sn(x,k) resp. sn2(x,k) is periodic with period
4K(k) resp. 2K(k), where KðkÞ ¼

R p=2

0
ð1� k2 sin2 xÞ�1=2 dx is the complete elliptic integral of the first kind
Numerical approximations of the spectrum for the Mathieu equation (35) with q = 2. For the figure on the left dB = 0.25, while
.025 on the right. Four different methods were used, all approximating ~a with an accuracy of 10�6. For (a)–(c) the FFHM was used
= 1, P = 2 and P = 4, respectively. For (d) the FDM4 was used. In these figures, approximate spectral elements computed with

are indicated by circles. The a-value is real and is shown on the horizontal axis.



Fig. 2. The spectrum for the Mathieu equation (35), using the FFHM with P = 2. Every black point is an approximate point of the
spectrum. No filling in of spectral regions was done. All plotted points were the result of a computation.
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[50]. Finally, L�(k) and L+(k) are the linear Schrödinger operators determined by the left-hand sides of these
two Hill equations. It is known (see e.g., Whittaker and Watson [50]) that all equations of the form (38a) and
(38b) give rise to a real spectrum (due to the equation being self adjoint), with a spectrum that is bound from
below, but not from above. Further, there are a finite number of finite-sized gaps in the spectrum to the right
of the lowest eigenvalue if and only if the coefficient of 2k2sn2(x,k) is a triangular number, i.e., a number of the
form n(n + 1)/2, n a positive integer. The number of spectral gaps is exactly n. For (38a), n = 1, while for (38b)
n = 2. The special case of Hill’s equation considered here is also known as the Lamé equation [30]. All other
coefficients in (38a) and (38b) are chosen for later convenience. The spectra of these equations and all their
eigenfunctions are known exactly. The spectra are drawn in Fig. 3.

The Fourier series of sn2(x,k) is given by
sn2ðx; kÞ ¼ 1

k2
1� EðkÞ

KðkÞ

� �
� 2p2

k2K2ðkÞ
X1
n¼1

nqn

1� q2n
cos

npx
KðkÞ

� �
; ð39Þ
where q ¼ e�pKðk0Þ=KðkÞ, k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

, and EðkÞ ¼
R p=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 x

p
dx is the complete integral of the second

kind. Note that this Fourier series appears to be an obscure result, not even mentioned in [25]. An erroneous
Fourier series for sn2(x, k) is mentioned in [9]. Jacobi published a correct one in his treatise on elliptic func-
tions [31]. Since the Fourier series of sn2(x, k) does not terminate, the matrices resulting from the FFHM for
(38a) and (38b) are not banded.

These cases of Hill’s equation with their analytically known spectra are excellent benchmarks for the numer-
ical methods discussed in this paper. Fig. 4 illustrates the exponential convergence rate of the FFHM, compared
to the finite-order convergence rate of the FDM4. Another advantage of the FFHM is the ease with which
eigenfunctions may be reconstructed, as the eigenvectors of the eigenvalue problem solved give truncated vec-
tors of Fourier coefficients of the eigenfunctions (possibly after multiplication by the appropriate eilx). There is
a single eigenfunction of (38b) corresponding to k = �3(1 � k2), namely (up to a multiplicative constant)
y ¼ snðx; kÞdnðx; kÞ. ð40Þ

The numerical eigenfunction is easily normalized by requiring that y(K(k)) = k 0. Fig. 5a displays the numerical
approximation to the eigenfunction for k = 0.9, while Fig. 5b shows the numerically computed L2-norm of the
Fig. 3. The spectra of the two Hill equations (38a) and (38b).



Fig. 4. The convergence of the FFHM (two bottom curves) and of the FDM4 (two top curves). The points on the solid curves show the
accuracy of numerically computing the lowest eigenvalue of (38a). The points on the dotted curves show the same for (38b). These
computations demonstrate the claimed exponential convergence rate of the FFHM, compared to the power-law (4th order here)
convergence for FDMs. Using the FFHM with double-precision arithmetic, it is pointless to proceed beyond matrices of size 35 (i.e., 17
Fourier modes), as the obtained accuracy is on the level of machine round-off error.
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Fig. 5. The numerical approximation using FFHM of the eigenfunction (40) (a, top), and the pointwise error of this approximation (a,
bottom). Also shown (b) are the varying matrix sizes M = 2N + 1 as a function of the elliptic modulus k, for k = 0.1 to k = 0.99, required
to maintain an L2-error < 10�8 on the numerical approximation of the eigenfunction (40).
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difference between (40) and its approximation using the FFHM as a function of k, as well as the matrix sizes
giving rise to this difference. By the nature of its construction, the approximation of the eigenfunction is given
by a trigonometric polynomial and is uniformly valid as a function of x. This should be contrasted with the
piecewise in x approximation obtained from the FDM4.

4.2.2. The soliton limit

The FFHM is ideally suited for problems with periodic coefficients. In problems (38a) and (38b), the period
of the coefficients increases as k! 1, since limk!1K(k) =1. In this limit, the two Hill equations become
L�ð1Þu ¼ �u00 þ ð1� 2sech2xÞu ¼ ku; ð41aÞ
Lþð1Þv ¼ �v00 þ ð1� 6sech2xÞv ¼ kv. ð41bÞ
The spectrum of the first equation consists of a double eigenvalue at k = 0 and a continuous band k 2 [1,1).
Similarly, the spectrum of the second equation is k 2 [�3] [ [0] [ [1,1). This limit of the periodic problem will
be referred to as the soliton limit. There are two ways to approach these spectral problems using the FFHM:
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� Large k limit. Consider (38a) and (38b) for large (i.e., close to 1) values of k. Here close to 1 should be on the
order of k = 0.9999 or more. Then 2K(0.9999) = 11.29, and the functional form of sn2(x,k) starts to resemble
sech2x. In this case reasonable accuracy requires many terms of the series (39). For instance, k = 0.9999
requires N = 25, resulting in matrices of size 51 · 51. For numerical purposes this is still a small matrix, espe-
cially when compared to the matrix size that would be required using equally spaced FDMs, in order to dis-
cretize a periodic function on an interval of length 11.29 with high accuracy. Table 1 gives an idea of the order
of magnitude of the matrix sizes and the CPU times that FDMs would require to obtain comparable results.
� Soliton cutoff. A second approach is to consider (41a) and (41b) directly, but cutoff the exponential tails of

the coefficients. Then we may consider a periodic extension of the resulting problem. This extension will
have an exponentially small mismatch at the edges. The advantage of this approach is that large periods
are easily achieved. The Fourier coefficients of a truncated sech2x give rise to integrals that cannot be eval-
uated analytically, but their high-accuracy numerical evaluation poses no problem. This second approach is
the one of choice when handed a typical problem defined on the whole real line, for the simple reason that it
is typically not obvious how to construct a sequence of periodic problems that does not have a mismatch at
the edges of its period interval which limits to the given problem on the whole real line.

For both of these scenarios the accuracy of the periodic approximation may be judged by the extent to
which the finite spectral bands have collapsed to points. No comparison with the FDM approach will be done,
as we are only considering black-box FDMs that have equally spaced grids, which is unnecessarily computa-
tionally intensive and wasteful. Letting k = 1 � �, using the analytical expressions for the band edges giving in
Fig. 4 we find that the length of the spectral bands approaches zero at a quadratic rate in �. Table 3 shows that
the Soliton cutoff approach is capable of obtaining equally accurate results compared to the large k limit
approach. Note that in general, for problems that are not self-adjoint, a large-period approximation to a
whole-line problem will have small circles of continuous spectrum, surrounding the location of the isolated
eigenvalues of the limit problem. Self-adjoint problems are one example where these small circles degenerate
to small line-segments (‘‘bands’’). An overview of results like this may be found in [45], where one also finds
statements about the convergence of the radius of the small circles to zero, as the period of the periodic gen-
eralization approaches infinity. Results from large k limit numerics and the soliton cutoff approach are given
in Table 3. These results illustrate that the exponential mismatch at the edges of the period box result in a loss
of accuracy for an equal number of Fourier modes, so that a larger number of modes has to be used to obtain
the same accuracy. Another example of the soliton cutoff method is given in the next section.

4.3. The forward scattering problem for the Korteweg-deVries equation

As mentioned in the introduction, the FFHM may be used to numerically solve the forward scattering
problem for any integrable equation. A special case of this is illustrated here for the Korteweg-deVries
(KdV) equation with sech2 potential. The KdV equation
Table
A com

Elliptic

1 · 10�

1 · 10�

1 · 10�

1 · 10�

1 · 10�

1 · 10�

1 · 10�

Soliton

For al
This ta
ut ¼ 6uux þ uxxx ð42Þ
3
parison of the large k approach with the soliton cutoff method

modulus k Period 2K(k) N

3 9.0 22
4 11.3 27
5 13.6 32
6 15.9 37
7 18.2 42
8 20.5 47
9 22.8 52

cutoff 22 100

l runs, the number of modes with a given spatial period was chosen to ensure a band length of any finite-sized band less than 10�6.
ble illustrates there is a price to pay for the exponential mismatch at the edges of the period box, using the soliton cutoff method.



Fig. 6. Spectra of the Schro

discrete eigenvalues. Note that some remnants of the periodic extension may be observed in the continuous spectrumk< 0 on the right.312B. Deconinck, J. Nathan Kutz / Journal of Computational Physics 219 (2006) 296–321
is the compatibility condition wxxt = wtxx of the two linear differential equations
kw ¼ �wxx � uw; ð43aÞ
wt ¼ �uxwþ ð2uþ 4kÞwx. ð43bÞ
An overview of the inverse scattering method, as applied to the KdV equation, may be found in [41]. For the
purpose of illustrating the FFHM as a numerical means to examine the forward scattering problem, we let
u ¼ aðaþ 1Þsech2ðxÞ; ð44Þ

where a is a real, positive parameter. It is known (see [21] for example) that the number of solitons in this profile
is [a + 1], where [Æ] denotes the integer part of its argument. This number is also equal to the number of discrete
eigenvalues of the spectral problem (43a). Fig. 6 illustrates these facts. It was computed using the soliton cutoff
method, with L = 20 and N = 100. Also indicated are the curves a ¼ nþ

ffiffiffiffiffiffiffi
�k
p

, for n = 0,1,2,3,4. These are
hard to tell apart from the numerically computed discrete eigenvalues, with which they perfectly match.

4.4. The focusing nonlinear Schrödinger equation

Consider the focusing nonlinear Schrödinger (NLS) equation in one spatial dimension
iwt ¼ �wxx � 2jwj2w; ð45Þ

for a complex wave field w(x, t). Either the focusing or defocusing NLS equation arises in any application
where slowly modulated waves in a nonlinear medium are considered [3]. The focusing equation (45) has many
exact solutions, one of which is
wðx; tÞ ¼ eið2�k2Þtdnðx; kÞ; ð46Þ

where dn(x, k) is the third of Jacobi’s elliptic functions. It limits to 1 as the elliptic modulus k approaches 0,
and to sechx as the elliptic modulus k approaches 1. Further, dn(x,k) is periodic with period 2K(k) [50]. In the
limit k! 0, (46) becomes
wðx; tÞ ¼ e2it; ð47Þ

which is a plane wave solution of the NLS equation. On the other hand, in the limit k! 1, (46) becomes
wðx; tÞ ¼ eitsechx; ð48Þ

which is a one-soliton solution of (45). In order to examine the linear stability of these solutions, we let
wðx; tÞ ¼ ð/ðx; tÞ þ �ðUðxÞ þ iV ðxÞÞektÞeixt; ð49Þ
–9

λ

α

–4 –1 0
0

1

2

3

4

5

¨dinger operator with potential as given by(44), for varyinga, using the soliton cutoff method as described in

the text. Also plotted are the parabolaea¼nþffiffiffiffiffiffiffi�k
pforn= 0,1,2,3,4, which perfectly match the computed approximations to the



where x = 2 � k2 for solutions of the form (46), or x = 1 for the soliton solution (48). Substitution of this
ansatz in (45) and retaining first-order terms in � results in the linear matrix equation
0 L�ðkÞ
�LþðkÞ 0

� �
U
V

� �
¼ k

U
V

� �
ð50Þ
with the linear operators L�(k) and L+(k) as given in (38a) and (38b) for k 2 [0,1), and (41a) and (41b) for
k = 1. The problem at hand is to determine the spectrum of (50), i.e., the set of all k for which there are
bounded perturbations U(x) and V(x). If any such k has nonzero real part (the spectrum has reflection sym-
metry across both the real and imaginary k axis, due to the Hamiltonian character of the NLS equation), the
NLS solution is unstable.

Since the linear stability problem (50) has constant coefficients if k = 0, the spectrum is easily found in this
case. It consists of the entire imaginary axis and the real interval [�2,2]. For the soliton case (k = 1) the spec-
trum is known analytically as well, as are many of the eigenvectors (U,V)T [49]. The spectrum is contained on
the imaginary k-axis and consists of two semi-infinite line segments from ±i to 1 along the imaginary axis,
and an eigenvalue of multiplicity four at the origin. The literature on the stability analysis of the solutions with
0 < k < 1 is limited. The most recent and most extensive results may be found in [32]. To the best of our knowl-
edge, nobody has been able to describe the spectrum fully for 0 < k < 1, either analytically or numerically.

In order to use the FFHM we proceed as before, using the Fourier series of the coefficient functions of (50),
and substituting an unknown Fourier series for U and V. The procedure differs slightly from what was done
before, as (50) is a matrix system of differential equations. In essence, all is similar to what was done for the
scalar case. Instead of a scalar bi-infinite difference equation, a block matrix equation with bi-infinite blocks is
constructed. The block matrix entries correspond to the elements of the 2 · 2 matrix in (50). The zero entries
give rise to bi-infinite zero blocks, whereas the L�(k) and �L+(k) entries result in the same bi-infinite blocks as
for the scalar case. Specifically, let
U ¼ eilx
X1

j¼�1
U je

i2pjx
PL ; ð51aÞ

V ¼ eilx
X1

j¼�1
V je

i2pjx
PL ; ð51bÞ

/2ðxÞ ¼
X1

j¼�1
cje

i2pjx
L ; ð51cÞ
with
Uj ¼
1

PL

Z PL=2

�PL=2

ðUðxÞe�ilxÞe�i2pjx
PL dx; ð52aÞ

V j ¼
1

PL

Z PL=2

�PL=2

ðV ðxÞe�ilxÞe�i2pjx
PL dx; ð52bÞ

cj ¼
1

L

Z L=2

�L=2

/2ðxÞe�i2pjx
L dx; ð52cÞ
for j 2 Z. Due to the linearity of the equations, the truncated finite-difference equation obtained from (50)
using the above is (50) with the following replacements:
U ! ðUjÞNj¼�N ; ð53aÞ
V ! ðV jÞNj¼�N ; ð53bÞ

L�ðkÞ !
2pn
PL
þ l

� �2

þ x

" #
dn;m � 2cðn�mÞ=P dpjn�m

 !N

n;m¼�N

; ð53cÞ

LþðkÞ !
2pn
PL
þ l

� �2

þ x

" #
dn;m � 6cðn�mÞ=P dpjn�m

 !N

n;m¼�N

; ð53dÞ



Fig. 8. (a) The maximal growth rate of (46) and its limit cases (47) and (48), as a function of k. For the bottom curve, only periodic and
anti-periodic perturbations are considered. The top curve accounts for a variety of l values, and thus corresponds to perturbations of
arbitrary period, or even quasi-periodic ones. (b) The separation of the imaginary components of the spectrum from the real axis. In this
case, using periodic or anti-periodic perturbations suffices to find the points of these imaginary components. We note that this separation is
a perfect fit with the curve k2, as remarked in [32]. However, we disagree with Kartashov et al. [32] that the top curve in (a) is well described
by 2(1 � k2). Two hundred points are plotted for each curve. All points plotted are the result of computing a spectrum, with N = 50 and
D = 10.
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tion away from the origin of the imaginary component of the spectrum, again for equal-period and other
perturbations. Fig. 8 extends Figs. 1a and 2a of [32]. This figure illustrates that it is essential to consider
the entire range of l-values, not just the values on the boundary of its domain: merely considering periodic
or anti-periodic modes results in an underestimation of the maximal growth rate by more than 10%.

4.5. The quantum harmonic oscillator

In Section 4.2.2, an example was given where the FFHM was applied to a non-periodic problem. In that
case, an exponentially small mismatch existed at the boundaries of the periodic domain, as a consequence of
using the soliton cutoff method. In this section, we examine the performance of the FFHM when applied to
the one-dimensional quantum harmonic oscillator, i.e., the spectral problem
Table
The fir

Exact

1
3
5
7
9

11
13
15
17
19
�wxx þ x2w ¼ kw; x 2 R. ð54Þ

In this case, the penalty for using the soliton cutoff method is enormous: the x2 potential is limited to a finite
area x 2 [�L/2,L/2], resulting in a large derivative mismatch at the boundaries x = ±L/2. The purpose of this
section is to illustrate what the FFHM allows one to get away with: the method is not designed to work on a
problem like (54). On the other hand, (54) is well-understood and its eigenvalues and eigenfunctions are known
and can be found in any quantum mechanics text [39]. Therefore it is a good test case for any numerical method.
The results of applying the FFHM are shown in Table 4 and Fig. 9, with parameter values as indicated.

These results illustrate that the computations of the eigenvalues remains highly accurate, even when the
pointwise error of the approximation of the eigenfunctions increases. This is not surprising, as this same prin-
ciple underlies the success of the Rayleigh–Ritz principle, both in quantum mechanics [10] and in nonlinear
4
st 10 eigenvalues of (54) and their absolute errors using the FFHM with N = 100, L = 16

eigenvalue Absolute error using FFHM

4.011724286101526e � 11
2.640969221090472e � 09
6.515937123197091e � 09
6.373176653085011e � 09
2.706672219687789e � 09
2.547496436022811e � 09
9.293426472822830e � 09
7.243926347655361e � 09
1.454309739301607e � 08
3.501478929024415e � 08
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Fig. 9. (a) The first, second, third and tenth eigenfunction of (54) using the FFHM with N = 100 and L = 16. (b) The absolute value of the
pointwise error comparing with the exact eigenfunctions using Hermite functions.
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problems [48]. As before, without knowing the exact values of the eigenvalues, the convergence of the method
may be estimated by considering the degeneration of small periodic bands or circles of approximate spectral
elements to their discrete limit.

Although the approximation of the eigenvalues is significantly more accurate than that of their correspond-
ing eigenfunctions, the approximation of especially the first few eigenfunctions is reasonable. When comparing
the effort required here with that which might be required using an FDM to obtain equal accuracy (see Table
1, last two columns), the results are more than satisfactory.

4.6. A two-dimensional Schrödinger equation with periodic coefficients

Just like the FDM, the FFHM is easily adapted to multidimensional problems. Where previously the coef-
ficients of the linear operator were expanded in a one-dimensional Fourier series, now they are expanded in a
multidimensional Fourier series. Similarly, the eigenfunctions are expanded as products of multidimensional
Fourier series and an exponential factor containing a multidimensional Floquet multiplier. For the sake of
explicitness, in the remainder of this section we examine the two-dimensional case. As an example, below
we consider a specific two-dimensional Schrödinger equation with a standing light-wave potential.

Any coefficient function of a two-dimensional linear operator with periodic coefficients is expanded as
f ðx; yÞ ¼
X1

jx¼�1

X1
jy¼�1

f̂ jx;jy
ei2pðjxx=Lxþjyy=Ly Þ; ð55Þ
with
f̂ jx;jy
¼ 1

LxLy

Z Lx=2

�Lx=2

Z Ly=2

�Ly=2

f ðx; yÞe�i2pðjxx=Lxþjy y=Ly Þ dxdy; ðjx; jyÞ 2 Z� Z; ð56Þ
where Lx and Ly denote the periods in the x and y directions. Using a two-dimensional extension of Floquet
theory (perhaps more appropriately referred to as Bloch theory in the multidimensional context), the eigen-
functions are expanded as
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wðx; yÞ ¼ eilxxþily y
X1

jx¼�1

X1
jy¼�1

/̂jx;jy
ei2pðjxx=P xLxþjy y=P y Ly Þ ¼

X1
jx¼�1

X1
jy¼�1

/̂jx ;jy
eixðlxþ2pjx=P xLxÞþiyðlyþ2pjy=P y Ly Þ; ð57Þ
where the expansion coefficients /̂jx;jy
; ðjx; jyÞ 2 Z� Z are of the same dimension as w(x, y). Further, the Floquet

exponents (lx, ly) are limited to the dual lattice of the original spectral problem, with an extra scaling due to the
integer factors Px and Py: (lx, ly) 2 [0, 2p/Px Lx) · [0,2p/PyLy). Substitution of the Fourier expansions of the
coefficient functions and of the eigenfunction expansions in the spectral problem results in a two-dimensional
bi-infinite difference equation for the expansion coefficients /̂jx;jy

of the eigenfunctions. In fact, a two-parameter
family of such difference equations is obtained, as the difference equation is parametrized by lx and ly.

Let us consider the specific example of a two-dimensional Schrödinger equation with a potential that is
periodic in both x and y:
� 1

2
ðwxx þ wyyÞ þ f ðx; yÞw ¼ kw. ð58Þ
Substituting (57) in this equation we find the two-dimensional bi-infinite difference equation
1

2
/̂k;l lx þ

2pk
P xLx

� �2

þ ly þ
2pl
P yLy

� �2
" #

þ
X1

m¼�1

X1
n¼�1

f̂ m�k
Px
;n�l

Py
/̂m;n ¼ k/k;l; ð59Þ
for ðk; lÞ 2 Z� Z. Further, as before f̂ m�k
Px
;n�l

Py
is defined to be zero if either one of (m � k)/Px or (n � l)/Py is

noninteger.
In order to use (59) as the basis for a numerical scheme for computing the spectrum of the two-dimensional

Schrödinger equation (58), the number of modes in each dimension is truncated. Depending on the periods in
those dimensions, different truncations may be required for different dimensions, to obtain a certain accuracy.
It is clear at this stage how the implementation of such a scheme will differ from that of the one-dimensional
setting. Instead of a single loop over all retained Fourier modes in one-dimension, a double nested loop is
required, each inner loop corresponding to a loop of Fourier modes in that dimension, depending on the Fou-
rier mode of the outer loop. Generalizing this to more than two dimensions should be obvious. Such construc-
tions are also required for implementations of FDMs in higher dimensions. The essential difference between
the two methods is that the number of Fourier modes required for a given accuracy is typically orders of mag-
nitude less than the number of grid points required in an FDM setting, as is seen in Table 1 and Fig. 5. As the
number of dimensions increases, this difference is paramount. Suppose a problem with periodic coefficients is
considered in one spatial dimension. Assume that to obtain a given accuracy, 10 Fourier modes need to be
retained, resulting in a matrix of size 21 · 21. Using Table 1 as a guide, an FDM matrix of size about
200 · 200 is required to obtain comparable accuracy, if a 4th order method is used. Now consider a
two-dimensional version of this same problem with equal periods in both dimensions. One may expect that
10 Fourier modes in each dimension is sufficient to obtain an accuracy comparable to that obtained in the
one-dimensional case. Thus, a matrix of size 212 · 212 = 441 · 441 is required. For numerical purposes this
is still a relatively small matrix. Using FDM4, it appears a matrix of size 2002 · 2002 = 40,000 · 40,000 is
needed, which is large by any standard. These comparisons are slated even more in favor of the FFHM if
non-equal period modes are considered and many matrices of the above sizes are necessary. This assumes that
the FDM4 is incorporating Floquet theory as specified before, and not by considering larger periods. This
would increase the required matrix size even more, resulting in prohibitively large matrices. This discussion
may be repeated for three or more dimensions, becoming more one-sided as the number of dimensions
increases.

It should not be a surprise that the study of spectra of linear Schrödinger operators has received a lot of
attention, given their importance in both physics and mathematics. Specifically, the Schrödinger equation with
a periodic potential is the fundamental equation of solid state physics. Any text on solid state physics (e.g., the
classic [5]) will touch on several ways in which the spectrum of this equation may be understood. One of the
canonical ways is the so-called orthogonal plane-wave expansion method, which is identical to Hill’s method
as described here. This method is the cornerstone for the computations performed by the commercial package
RSoft [44]. As stated before, particular aspects of the FFHM have been used before by different authors on
specific examples, and the plane-wave expansion method is another instance of this.
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In solid state physics, the spectrum is usually plotted as a function of the Floquet parameters
(lx, ly) 2 [0, 2p/PxLx) · [0, 2p/Py Ly). This is useful in this setting, as (lx, ly) is the mathematical representa-
tion of the quasi-momentum. With this knowledge, one determines at which values of the quasi-momentum
different Brillouin zones exist [5]. We will do the same below, for the case of a standing-light wave potential
modeled by
Fig. 10
A = 1
sufficie
10�3, a

Fig. 11
with p
f ðx; yÞ ¼ A sin2 x sin2 y; ð60Þ

so that Lx = Ly = p. Thus, using Px = Py = 2, (lx, ly) 2 [0,1) · [0,1). Then
ðf̂ i;jÞ1i;j¼�1 ¼ A

..

. ..
. ..

.

� � � 1=4 �1=2 1=4 � � �
� � � �1=2 1 �1=2 � � �
� � � 1=4 �1=2 1=4 � � �

..

. ..
. ..

.

0
BBBBBBBB@

1
CCCCCCCCA
; ð61Þ
and all Fourier coefficients of (60) not explicitly written are zero. The results for two different values of A are
shown in Fig. 10. For A = 0, the spectrum is k 2 [0,1), but for other values of A band gaps may appear in this
spectrum, as shown. To obtain the results shown in Fig. 10, N = 3 modes were used, for 40 different values of
the quasi-momentum in each dimension. Thus 49 eigenvalues of 402 = 1600 different matrices of size
(2N + 1)2 · (2N + 1)2 = 49 · 49 were computed. To generate the data for each of these figures took less than
9 s to generate. Lastly, Figs. 11 and 12 display a few eigenfunctions, for parameter values as indicated.
. The eigenvalue k as a function of the quasi-momentum (lx, ly), for different values of A: A = �0.3 (left), A = 0 (middle) and
(right). Note that the spectrum of (58) is obtained by projecting these figures on the vertical axis. For all these runs, N = 3 proved
nt, which is not surprising given that the potential (60) is trigonometric. The data used to generate these figures is accurate to within
s in the case of the Mathieu equation (see Table 1).

. Eigenfunctions of (58) with A = 1 corresponding to zero quasi-momentum, i.e., (lx, ly) = (0,0). These eigenfunctions are periodic
eriod p in both directions. They correspond to the central points on the three eigenvalue sheets plotted in Fig. 10 on the right.



Fig. 12. Contour plots of the real (top) and imaginary (bottom) parts of eigenfunctions of (58) with A = 1 corresponding to quasi-
momentum (lx, ly) = (1/4,1/4). These eigenfunctions are periodic with period 4p in both directions. They correspond left-to-right to the
points at (1/4, 1/4) on the three eigenvalue sheets bottom-to-top plotted in Fig. 10 on the right. The x and y variables range from �2p to
2p.
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5. Summary

In 1886, Hill incorporated the theories of both Fourier and Floquet to investigate the spectrum of what is
now known as Hill’s equation [28]. In this paper, we have used Hill’s ideas to develop the Fourier–Floquet–
Hill method (FFHM) for the numerical computation of spectra of arbitrary linear operators with periodic
coefficients. This method may be applied to scalar or vector operators, in one or more dimensions. The incor-
poration of Fourier series leads to a spectrally accurate method. Using Floquet theory results in a uniform
approximation of entire components of the spectrum, not a selected few points in it. We have also demon-
strated that finite-difference methods (FDMs) may be modified almost trivially so as to reap these benefits
of incorporating Floquet theory. All of these issues were amply discussed and illustrated in the examples.

In addition to its core application areas, we have illustrated that the FFHM may be applied to problems
with coefficients defined on unbounded domains, such as soliton problems or classical problems involving spe-
cial functions, such as the quantum harmonic oscillator. This greatly extends the applicability of the FFHM.

The black-box method most commonly used for the computation of spectra of linear operators is the FDM.
We have demonstrated that for comparable accuracy the FFHM is orders of magnitude faster, due to its spec-
tral accuracy, and its ability to compute approximations to more spectral elements by using multiple smaller
matrices instead of a single large matrix. This enables us to accurately compute spectra of linear operators that
were previously outside the reach of any computation effort.

Lastly, we have highlighted some interesting features of spectral problems which are often disregarded in
the literature: all too often the space of eigenfunctions is restricted to contain only functions that are periodic
with the same period as the coefficients, or small integer multiples thereof. As demonstrated in the examples,
unless the linear operator is scalar and of second order, this approach is usually flawed, in that it will result in
an underestimation of the extremal parts of the spectrum. Perhaps most importantly, for problems originating
from a linear stability analysis this leads to an incorrect prediction of: (i) the maximal growth rate; and (ii) the
shape of the most unstable mode.
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